МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

Заведующий кафедрой органической химии

проф. Х.С. Шихалиев

26.05.2025 e.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.ДВ.02.01. Методы супрамолекулярной химии
Код и наименование дисциплины в соответствии с учебным планом

8. Учебный год: <u>2028-2029</u> Семестр(ы): _7
(наименование рекомендующей структуры, дата, номер протокола,
7. Рекомендована: <u>НМС химического факультета №10-03 от 27.03.2025</u>
(ФИО, ученая степень, ученое звание)
6. Составители программы: Ковыгин Юрий Александрович, к.х.н., доцент
5. Кафедра, отвечающая за реализацию дисциплины: Органической химии
4. Форма обучения: очная
3. Квалификация (степень) выпускника: <u>Химик. Преподаватель химии</u>
2. Специализация: Фундаментальная химия в профессиональном образовании.
1. Код и наименование специальности: <u>04.05.01 Фундаментальная и прикладная химия</u>
4 M

9.Цели и задачи учебной дисциплины: *Цель изучения дисциплины* — на основе современных теоретических представлений о строении и реакционной способности супрамолекул и надмолекулярных структур сформировать у студентов научную базу для освоения последующих и специальных профессиональных дисциплин.

Задачи дисциплины – студенты должны знать основы номенклатуры, строения, методов получения, реакционной способности и областей использования основных типов супрамолекулярных соединений; уметь определять класс соединений-хозяев и прогнозировать селективность хелатирования; иметь представление о целенаправленном дизайне супрамолекул для построения молекулярных устройств.

10. Место учебной дисциплины в структуре ООП: (цикл, к которому относится дисциплина, требования к входным знаниям, умениям и компетенциям, дисциплины, для которых данная дисциплина является предшествующей)

Часть, формируемая участниками образовательных отношений, Блока 1. Дисциплины (модули).

Для изучения курса супрамолекулярной химии необходимы знания и умения, полученные при прохождении курсов общей и неорганической, физической, коллоидной и органической химии, физики. Материал курса способствует комплексному формированию умений и навыков в области химических (органической) и профильных (химической технологии) дисциплин, а также для практической деятельности химика.

11. Компетенции обучающегося, формируемые в результате освоения дисциплины:

б) профессиональные (ПК) (ПК-2.1, ПК-2.2);

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Код	Название компетенции	Код	Индикатор	Планируемые результаты обучения
ПК-2	Способен планировать работу и выбирать адекватные методы решения научно- исследовательских задач в области аналитической,	ПК-2.1	Составляет общий план исследования и детальные планы отдельных стадий	Знать: виды молекул-хозяев, основные типы связей в супрамолекулярных объектах Уметь: на основе полученных знаний прогнозировать характер взаимодействий в надмолекулярных структурах Владеть: навыками проектирования соединений-хозяев
	физической	ПК-2.2	Выбирает экспериментальные и расчетно-теоретические методы решения поставленной задачи, исходя из имеющихся материальных и временных ресурсов	Знать: основные методы синтеза и исследования надмолекулярных объектов, а также основные природные супрамолекулярные структуры. Уметь: на концептуальном уровне разрабатывать структуры соединений-хозяев под конкретные задачи. Владеть: базовыми навыками молекулярного дизайна.

12. Объем	дисциплины	в зачетных	единицах/час.(з соответствии	с учебным	планом) —
3/108						

Форма промежуточной аттестации _зачёт _.

13. Виды учебной работы

Вид учебной работы			Трудоемкость		
		Всего	По семестрам		
		200.0	7 семестр		
Контактная рабо	ота	76	76		
	лекции	38	38		
	практические	-	1		
в том числе:	лабораторные	38	38		
	курсовая работа	-	-		
	др. виды(при наличии)	-	1		
Самостоятельная работа		32	32		
Форма промежуточной аттестации (зачет – 0 час)		-	-		
Итого:		108	108		

13.1. Содержание дисциплины

п/п			Реализация	
	Наименование раздела дисциплины	Содержание раздела дисциплины	раздел дисциплины с помощью онлайн- курса, ЭУМК	
	·	1. Лекции		
1	Общие понятия. Место супрамолекулярной химии среди химических дисциплин.	Координационная химия как раздел супрамолекулярной химии. Классификация надмолекулярных структур. Клатраты, кавитаты. Типы соединений включения.	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id= 9559	
2	Типы взаимодействий в надмолекулярных структурах	Нековалентые взаимодействия в супрамолекулярной химии. Взаимодействия типа ион-ион, ион-диполь, диполь-диполь π –ион, стэкинг-взаимодействие, силы Вандер-Ваальса, плотная упаковка, гидрофобные эффекты, водородная связь.	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id= 9559	
3	Молекулы-хозяева для катионов	Коранды: краун- и лариат-эфиры, гетерокрауны. Поданды. Макроциклический эффект, предорганизация. Криптанды, сферанды. Синтез и дизайн анионных хозяев.	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id= 9559	
4	Молекулы-хозяева для анионов.	Катапинанды. Антикрауны и антиподанды. Хелатирующие реагенты на основе ценовых соединений. Цвиттер-ионы. Гидридная губка. Синтез и дизайн катионных хозяев.	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id= 9559	
5	Молекулы-хозяева для нейтральных молекул	Клатраты. Гидраты метана, гипотеза «метангидртного ружья». Клатраты мочевины. Каликсарены. Циклодекстрины. Применение нейтральных хелатирующих реагентов. Фуллерены.	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id= 9559	
6	Темплатный синтез и самосборка	Самосборка. ВТМ. Репликация нуклеиновых кислот. Молекулярные кубы, треугольники, квадраты. Негэнтропийный синтез катенанов, ротаксанов. Темплаты. Матричный синтез	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id=	

		корандов и криптандов. Комплексы типа «офис», молекулярные узлы, ротаксаны. Геликаты. Дендримеры.	9559
7	Молекулярные устройства	Супрамолекулярная фотохимия. Металлоиндикаторы, флуорофоры, редокссенсоры. Молекулярные проводники, полупроводники, переключатели. Молекулярные двигатели.	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id= 9559
8	Биомиметика.	Супрамолекулярная модель функционирования ферментов, клеточный транспорт. Биоподражательные структуры. Абиогенный фотосинтез.	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id= 9559
		2. Лабораторные занятия	
1	Общие понятия. Место супрамолекулярной химии среди химических дисциплин.	Координационная химия как раздел супрамолекулярной химии. Классификация надмолекулярных структур. Клатраты, кавитаты. Типы соединений включения.	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id= 9559
2	Типы взаимодействий в надмолекулярных структурах	Нековалентые взаимодействия в супрамолекулярной химии. Взаимодействия типа ион-ион, ион-диполь, диполь-диполь π–ион, стэкинг-взаимодействие, силы Вандер-Ваальса, плотная упаковка, гидрофобные эффекты, водородная связь.	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id= 9559
3	Молекулы-хозяева для катионов	Коранды: краун- и лариат-эфиры, гетерокрауны. Поданды. Макроциклический эффект, предорганизация. Криптанды, сферанды. Синтез и дизайн анионных хозяев.	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id= 9559
4	Молекулы-хозяева для анионов.	Катапинанды. Антикрауны и антиподанды. Хелатирующие реагенты на основе ценовых соединений. Цвиттер-ионы. Гидридная губка. Синтез и дизайн катионных хозяев.	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id= 9559
5	Молекулы-хозяева для нейтральных молекул	Клатраты. Гидраты метана, гипотеза «метангидртного ружья». Клатраты мочевины. Каликсарены. Циклодекстрины. Применение нейтральных хелатирующих реагентов. Фуллерены.	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id= 9559
6	Темплатный синтез и самосборка	Самосборка. ВТМ. Репликация нуклеиновых кислот. Молекулярные кубы, треугольники, квадраты. Негэнтропийный синтез катенанов, ротаксанов. Темплаты. Матричный синтез корандов и криптандов. Комплексы типа «офис», молекулярные узлы, ротаксаны. Геликаты. Дендримеры.	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id= 9559
7	Молекулярные устройства	Супрамолекулярная фотохимия. Металлоиндикаторы, флуорофоры, редокссенсоры. Молекулярные проводники, полупроводники, переключатели. Молекулярные двигатели.	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id= 9559
8	Биомиметика.	Супрамолекулярная модель функционирования ферментов, клеточный транспорт. Биоподражательные структуры. Абиогенный фотосинтез.	Супрамолекулярн ая химия https://edu.vsu.ru/c ourse/view.php?id= 9559

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование раздела	Виды занятий (часов)

п/ п	дисциплины	Лекции	Практиче ские (подготов ка)	Лаборатор ные	Самостояте льная работа	Всего
1	Общие понятия. Место супрамолекулярной химии среди химических дисциплин.	4	-	4	4	12
2	Типы взаимодействий в надмолекулярных структурах	4	-	4	4	12
3	Молекулы-хозяева для катионов	6	-	6	4	16
4	Молекулы-хозяева для анионов.	6	-	6	4	16
5	Молекулы-хозяева для нейтральных молекул	6	-	6	4	16
6	Темплатный синтез и самосборка	4	-	4	4	12
7	Молекулярные устройства	4	-	4	4	12
8	Биомиметика.	4	-	4	4	12
	Итого:	38	-	38	32	108

14. Методические указания для обучающихся по освоению дисциплины

Студенты знакомятся с теоретическим материалом в процессе лекционного курса, самостоятельно прорабатывая его с использованием рекомендованной учебной литературы и учебно-методических пособий (п. 15). Организация изучения дисциплины предполагает:

- изучение основных и дополнительных литературных источников;
- выполнение практического задания;
- текущий контроль успеваемости в форме устного опроса по основным разделам дисциплины.
- При реализации дисциплины с использованием дистанционных образовательных технологий используются инструменты электронной информационно-образовательной среды ВГУ «Электронный университет ВГУ» (https://edu.vsu.ru) и/или "МООК ВГУ" (https://edu.vsu.ru) и/или "МООК ВГУ" (https://edu.vsu.ru), сервисы видеоконференций (BigBlueButton), электронная почта, мессенджеры и соцсети.

Обучение лиц с ограниченными возможностями здоровья осуществляется с учетом их индивидуальных психофизических особенностей. Для лиц с нарушением слуха информация по учебной дисциплине предоставляется на бумажном или электронном носителе, допускается присутствие ассистентов и сурдопереводчиков на занятиях. Промежуточная аттестация для таких студентов проводится в письменной форме с общими критериями оценивания; при необходимости время подготовки на экзамене может быть увеличено.

Для лиц с нарушением зрения допускается аудиальное предоставление информации с использованием программ-синтезаторов речи, а также использование звукозаписывающих устройств на лекциях. На занятиях также может присутствовать ассистент. При проведении промежуточной аттестации для лиц с нарушением зрения тестирование может быть заменено на устное собеседование. время подготовки на экзамене может быть увеличено.

Студенты с нарушениями опорно-двигательного аппарата могут проходить часть занятий дистанционно Промежуточная аттестация для них проводится на общих основаниях, при необходимости процедура экзамена может быть реализована дистанционно.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)

а) основная литература:

№ п/п	Источник
1	Дж. В. Стид. Супрамолекулярная химия / Дж.В.Стид., Дж.Л.Этвуд; пер.с англ. под ред.
	А.Ю.Цивадзе .— М. :ИКЦ «Академкнига», Т.1. – 2007. 480 с.: ил.
2	Дж. В. Стид. Супрамолекулярная химия / Дж.В.Стид., Дж.Л.Этвуд; пер.с.англ. под ред.

А.Ю.Цивадзе .— М. :ИКЦ «Академкнига», Т.2. – 2007. 416 с.: ил.

в)информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

№ п/п	Источник
3	Базы данных ЗНБ ВГУ www.lib.vsu.ru
4	Химия во всех проявления – химический портал. Chem.Port.ru http://www.chem.port.ru
5	Супрамолекулярная химия http://www.ch.kcl.ac.uk/supramol/text-book.htm .
6	Курс Супрамолекулярная химия https://edu.vsu.ru/course/view.php?id=9559

^{*} Вначале указываются ЭБС, с которыми имеются договора у ВГУ, затем открытые электронно-образовательные ресурсы

16. Перечень учебно-методического обеспечения для самостоятельной работы Не предусмотрено

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ, электронное обучение (ЭО), смешанное обучение):

При реализации учебной дисциплины используются элементы электронного обучения и различные дистанционные образовательные технологии, позволяющие обеспечивать опосредованное взаимодействие (на расстоянии) преподавателей и обучающихся, включая инструменты электронной информационно-образовательной среды ВГУ «Электронный университет ВГУ» (https://edu.vsu.ru) и/или "МООК ВГУ" (https://mooc.vsu.ru), проведение вебинаров, видеоконференций (в том числе с применением сервисов Zoom и др.), взаимодействие в соцсетях, посредством электронной почты, мессенджеров.

18. Материально-техническое обеспечение дисциплины:

Учебная аудитория: доска меловая, мультимедиа-проектор, ноутбук, экран для проектора WinPro 8, Office Standard 2019, Kaspersky Endpoint Security, Google Chrome

Помещение для самостоятельной работы обучающихся, компьютерный класс (ауд. 271): специализированная мебель, компьютеры с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ВГУ WinPro 8, OfficeSTD, Kaspersky Endpoint Security, Google Chrome

19. Фонд оценочных средств:

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

№ п/п	Наименование раздела дисциплины	Компетенции	Индикаторы достижения компетенции	Оценочные средства
1	Общие понятия. Место супрамолекулярной химии среди химических дисциплин.	ПК-2	ПК-2.1 ПК-2.2	Комплект тестов, устный опрос, реферат.
2	Типы взаимодействий в надмолекулярных структурах	ПК-2	ПК-2.1 ПК-2.2	Комплект тестов, устный опрос, реферат.
3	Молекулы-хозяева для катионов	ПК-2	ПК-2.1 ПК-2.2	Комплект тестов, устный опрос, реферат.
4	Молекулы-хозяева для анионов.	ПК-2	ПК-2.1 ПК-2.2	Комплект тестов, устный опрос, реферат.
5	Молекулы-хозяева для нейтральных молекул	ПК-2	ПК-2.1 ПК-2.2	Комплект тестов, устный опрос, реферат.
6	Темплатный синтез и самосборка	ПК-2	ПК-2.1 ПК-2.2	Комплект тестов, устный опрос, реферат.
7	Молекулярные устройства	ПК-2	ПК-2.1	Комплект тестов, устный

			ПК-2.2	опрос, реферат.
8	Биомиметика.	ПК-2	ПК-2.1 ПК-2.2	Комплект тестов, устный опрос, реферат.
	Промежуточная а форма контроля	•		Перечень вопросов КИМ к зачётам

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств: *пабораторные работы, тесты, контрольные работы.*

Примеры заданий входящих в комплект тестов:

Закрытые.

- 1. Бензол имеет аномально высокую для малополярных соединений температуру плавления. Какое из межмолекулярных взаимодействий считается причиной этого?
- А) Силы Лондона
- Б) Стэкинг
- В) Гидрофобные взаимодействия
- Г) Квадрупольный резонанс
- 2. Краун-эфиры обладают весьма высокой селективностью к различным ионам, несравнимой с классическими комплексонами. Что является причиной такой избирательности?
- А) Макробициклический эффект
- Б) «Укутывание» гостя хозяином
- В) Предорганизация лиганда
- Г) Капиллярный эффект
- 3. Синтез селективных молекул-хозяев весьма сложен. Поэтому их мировое производство невелико. Но один из полифункциональных лигандов широко применяется в пищевой, фармацевтической, парфюмерной промышленности и, к тому же производится микробиологическим методом, поэтому является самым крупнотоннажным препаратом для супрамолекулярной химии. Назовите эти соединения?
- А) Каликсарены
- Б) ЭДТА
- В) Циклодекстрины
- Г) Циклотривератрилен
- 4. Наиболее известные хелатирующие реагенты, краун-эфиры являются селективными хозяевами для
- А) Катионов
- Б) Анионов
- В) Нейтральных молекул
- Г) Вирионов.
- 5. Электрическая анизотропия кристалла графита обусловлена наличием в его решётке нескольких типов связей. Каких?
- А) Ковалентная связь
- Б) Стэкинг-взаимодействие
- В) Ион-дипольное взаимодействие
- Г) Доменная структура
- Д) Делокализованная т-связь
- Е) Контактные ионные пары

- 6. Какие из перечисленных структурных элементов необходимы для молекулярных полупроводников?
- А) Наличие донорного и акцепторного фрагмента
- Б) Эффективная сорбция на мембранах
- В) Полиметиленовый спейсер не длиннее трёх атомов углерода.
- Г) Полностью сопряжённая или лучше ароматическая молекула.
- Д) Связь металл-металл в ядре комплекса
- Е) Стабильность в водных растворах
- 7. К супрамолекулярным объектам нельзя отнести
- А) Молекулу РНК
- Б) Комплекс ЭДТА с ионом железа
- В) Золотохлороводородную кислоту
- Г) Фенолят железа
- Д) Клатрат мочевины
- Е) Кристалл серы
- 8. Олигоэтиленгликоль можно охарактеризовать как представителя
- А) Гетероциклических соединений
- Б) Простых эфиров
- В) Подандов
- Г) Катапинандов
- Д) Электрофилов
- Е) Предорганизованных хозяев

Открытые. (минимум – 2 из 4 суждений)

1. Охарактеризуйте важнейшие преимущества гетерокорандов перед классическими краунэфирами.

Ответ: повышенное сродство к ионам переходных металлов, управление селективностью, простота иммобилизации, тонкая регулировка размера полости.

2. Каковы основные области применения нуклеофильных хозяев — краун-, лариат-эфиров, подандов?

Ответ: межфазный транспорт, экстракция катионов, растворение электролитов в неполярных средах, молекулярные устройства.

Описание технологии проведения

Аттестация включает устный опрос и доклад на выбранную тему. Тестирование используется для быстрой оценки уровня знаний по определенным темам.

Опросы, доклады и тесты могут проводиться как в электронной форме, так и на занятиях. Время выполнения этих заданий устанавливается преподавателем. Результаты текущей аттестации могут быть учтены при проведении промежуточной аттестации.

Технология проведения текущей аттестации включает использование электронных ресурсов для организации и контроля процесса, что позволяет автоматизировать оценку и хранение результатов. Мониторинг успеваемости осуществляется через электронный журнал оценок, что позволяет преподавателям и студентам отслеживать прогресс в режиме реального времени.

Требования к выполнению заданий, шкалы и критерии оценивания

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в формах: устного опроса (индивидуальный опрос, фронтальная беседа); тестирования.

Критерии оценивания:

Критерии оценивания компетенций	Шкала оценок
Полное соответствие ответа обучающегося всем перечисленным критериям. Продемонстрировано знание основных принципов, лежащих в основе нефтепереработки, анализа ископаемых углеводородов, транспортировки и использования нефтепродуктов.	Отлично
Ответ на контрольно-измерительный материал не соответствует одному (двум) из перечисленных показателей, но обучающийся дает правильные ответы на дополнительные вопросы. Недостаточно продемонстрировано знание базисных понятий и принципов.	Хорошо
Ответ на контрольно-измерительный материал не соответствует любым двум (трем) из перечисленных показателей, обучающийся дает неполные ответы на дополнительные вопросы. Демонстрирует частичные знания о нефтедобыче и нефтепереработке, конкретизация знаний отсутствует.	Удовлетворительно
Ответ на контрольно-измерительный материал не соответствует любым трем (четырем) из перечисленных показателей. Обучающийся демонстрирует отрывочные, фрагментарные знания процессов нефтехимии, делает грубые ошибки в уравнениях химических реакций.	Неудовлетворительно

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств: собеседование по билетам.

Перечень вопросов к экзамену и порядок формирования КИМ

КИМ содержит один вопрос и формируется из следующего списка:

Перечень вопросов к зачёту

- 1. Координационная химия как раздел супрамолекулярной химии.
- 2. Классификация надмолекулярных структур. Клатраты, кавитаты. Типы соединений включения.
- 3. Нековалентые взаимодействия в супрамолекулярной химии. Взаимодействия типа ион-ион, иондиполь, диполь-диполь π-ион, стэкинг-взаимодействие, силы Ван-дер-Ваальса, плотная упаковка, гидрофобные эффекты, водородная связь.
- 4. Коранды: краун- и лариат-эфиры, гетерокрауны.
- 5. Криптанды, сферанды.
- 6. Синтез и дизайн анионных хозяев.
- 7. Катапинанды. Антикрауны и антиподанды. Цвиттер-ионы.
- 8. Хелатирующие реагенты на основе ценовых соединений. Гидридная губка
- 9. Синтез и дизайн катионных хозяев.
- 10. Клатраты. Гидраты метана, гипотеза «метангидртного ружья». Клатраты мочевины.
- 11. Каликсарены. Циклодекстрины. Применение нейтральных хелатирующих реагентов.
- 12. Фуллерены.
- 13. Самосборка.
- 14. ВТМ. Репликация нуклеиновых кислот.
- 15. Молекулярные кубы, треугольники, квадраты. Негэнтропийный синтез катенанов, ротаксанов.
- 16. Темплаты. Матричный синтез корандов и криптандов.
- 17. Комплексы типа «офис», молекулярные узлы, ротаксаны. Геликаты. Дендримеры.
- 18. Супрамолекулярная фотохимия.
- 19. Металлоиндикаторы, флуорофоры, редокс-сенсоры.
- 20. Молекулярные проводники, полупроводники, переключатели. Молекулярные двигатели.
- 21. Супрамолекулярная модель функционирования ферментов, клеточный транспорт.
- 22 Биоподражательные структуры. Абиогенный фотосинтез.

Описание технологии проведения

Промежуточная аттестация студентов является основной формой контроля аудиторной работы студентов и проводится с целью установления уровня и качества подготовки студентов ФГОС 3++ и определяет:

- полноту и прочность теоретических знаний;
- сформированность умений применять теоретические знания при решении практических и профессиональных задач;
 - сформированность общих и профессиональных компетенций.

Подготовка к промежуточной аттестации является формой самостоятельной работы студентов. При этом обучающийся должен использовать рекомендованный рабочей программой

перечень основной и дополнительной литературы, материалы лекций, информационные и электронно-образовательные ресурсы. Для подготовки к промежуточной аттестации студент также может использовать перечень вопросов, вынесенных на экзамен, позволяющий оценить уровень сформированности профессиональных компетенций по дисциплине «Химия нефти и газа».

Промежуточная аттестация проводится в устной форме. Преподаватель, проводящий промежуточную аттестацию, имеет право задавать студентам дополнительные вопросы по всему разделу программы учебной дисциплины. Время проведения экзамена устанавливается нормами времени. Результат сдачи промежуточной аттестации заносится преподавателем в зачетно-экзаменационную ведомость и зачетную книжку.

Требования к выполнению заданий, шкалы и критерии оценивания

Оценка результатов обучения на промежуточной аттестации происходит по следующим показателям:

- 1) знание учебного материала и владение понятийным аппаратом нефтехимии;
- 2) умение иллюстрировать ответ примерами, уравнениями реакций;

По результатам всех выполненных заданий текущего контроля студентам может быть выставлен зачет автоматом.

Для оценивания результатов обучения на зачёте используется 2-балльная шкала: «зачтено», «не зачтено»

Критерии оценивания компетенций	Шкала оценок
Ответ полный, в целом качественный, основан на использовании основных источников информации. Присутствуют незначительные пробелы в знаниях или несущественные ошибки.	Зачтено
Неспособность ответить на вопрос без помощи экзаменатора. Незнание значительной части принципиально важных элементов дисциплины. Присутствуют многочисленные грубые ошибки.	Не зачтено

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

– при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене.

20.3 Задания, рекомендованные к использованию при проведении диагностических работ с целью оценки остаточных знаний по результатам освоения данной дисциплины:

ПК-2.1. Составляет общий план исследования и детальные планы отдельных стадий

Тестовые вопросы (закрытый тип)

- 1. Бензол имеет аномально высокую для малополярных соединений температуру плавления. Какое из межмолекулярных взаимодействий считается причиной этого?
- А) Силы Лондона
- Б) Стэкинг
- В) Гидрофобные взаимодействия
- Г) Квадрупольный резонанс
- 2. Краун-эфиры обладают весьма высокой селективностью к различным ионам, несравнимой с классическими комплексонами. Что является причиной такой избирательности?
- А) Макробициклический эффект
- Б) «Укутывание» гостя хозяином
- В) Предорганизация лиганда
- Г) Капиллярный эффект
- 3. Синтез селективных молекул-хозяев весьма сложен. Поэтому их мировое производство невелико. Но один из полифункциональных лигандов широко применяется в пищевой, фармацевтической, парфюмерной промышленности и, к тому же производится

микробиологическим методом, поэтому является самым крупнотоннажным препаратом для супрамолекулярной химии. Назовите эти соединения?

- А) Каликсарены
- Б) ЭДТА

В) Циклодекстрины

- Г) Циклотривератрилен
- 4. Наиболее известные хелатирующие реагенты, краун-эфиры являются селективными хозяевами для
- А) Катионов
- Б) Анионов
- В) Нейтральных молекул
- Г) Вирионов.
- 5. Электрическая анизотропия кристалла графита обусловлена наличием в его решётке нескольких типов связей. Каких?
- А) Ковалентная связь
- Б) Стэкинг-взаимодействие
- В) Ион-дипольное взаимодействие
- Г) Доменная структура
- Д) Делокализованная π-связь
- Е) Контактные ионные пары
- 6. К супрамолекулярным объектам нельзя отнести
- А) Молекулу РНК
- Б) Комплекс ЭДТА с ионом железа
- В) Золотохлороводородную кислоту
- Г) Фенолят железа
- Д) Клатрат мочевины
- Е) Кристалл серы
- 7. Соединения включения, в которых гость занимает полости в кристаллической решётке хозяина называются
- А) Клатраты
- Б) Хелаты
- В) Кавитаты
- Г) Перхлораты
- 8. Соединения включения, в которых гость занимает полости в молекуле хозяина называются
- А) Клатраты
- Б) Хелаты
- В) Кавитаты
- Г) Гидраты
- 9. Конформационно гибкий участок молекулы, соединяющий две её части называется
- А) Лиганд
- Б) Линкер
- В) Спейсер
- Г) Сквоттер
- 10. 18-Краун-6 хелатирующий реагент, селективный к иону
- А) Лития
- Б) Калия
- В) Натрия
- Г) Урана

Открытые.

1. Геликаты – это

Ответ: спиральные самоорганизующиеся надмолекулярные системы, координированные ионами металлов.

2. Типичные представители систем, в которых реализуется π -катионное взаимодействие (минимум 3) —

Ответ: ферроцен, сэндвичевые соедиения, металлоцены, интермедиат Уэлланда, ткомплексы

3. К важнейшим биогенным тетрапиррольным хозяевам относятся

Ответ: гемоглобин, хлорофилл, цианокобаламин

4. Кавитанды – это

Ответ: соединения-хозяева, имеющие в молекуле полость (предорганизованную или в перспективе) для связывания гостя.

5. Какие простые соединения способны выступать в роли клатрандов (минимум 2)? Ответ: вода, тиокарбамид, карбамид

ПК-2.2. Выбирает экспериментальные и расчетно-теоретические методы решения поставленной задачи, исходя из имеющихся материальных и временных ресурсов

- 1. Какие из перечисленных структурных элементов необходимы для молекулярных полупроводников?
- А) Наличие донорного и акцепторного фрагмента
- Б) Эффективная сорбция на мембранах
- В) Полиметиленовый спейсер не длиннее трёх атомов углерода.
- Г) Полностью сопряжённая или лучше ароматическая молекула.
- Д) Связь металл-металл в ядре комплекса
- Е) Стабильность в водных растворах
- 2. Олигоэтиленгликоль можно охарактеризовать как представителя
- А) Гетероциклических соединений
- Б) Простых эфиров
- В) Подандов
- Г) Катапинандов
- Д) Электрофилов
- Е) Предорганизованных хозяев
- 3. Жесткие концевые группы в молекуле поданда необходимы для
- А) Более прочного связывания гостя
- Б) Более лёгкого синтеза поданда
- В) Улучшения растворимости поданда
- Г) Частичной предорганизации поданда
- 4. В ряду нуклеофильных хозяев самые прочные соединения включения образуют
- А) Краун-эфиры
- Б) Поданды
- В) Криптанды
- Г) ЭДТА
- 5. Наилучшим катализатором для сборки корандов семейства 18-краун-6 является
- А) Гидроксид натрия
- Б) Гидроксид калия

- В) Гидроксид лития
- Г) Гидроксид аммония
- 6. Непременное условие функционирования «молекулярных проводов» это
- А) Наличие гетероатомов
- Б) Сопряжённая система кратных связей
- В) Ароматичность
- Г) Наличие донорных функциональных групп
- 7. Темплатный синтез это
- А) Сборка молекул за ограниченное время
- Б) Сборка молекул на координирующей матрице
- В) Сборка молекул на полимерной подложке.
- 8. «Протонная губка» является сильным основанием вследствие
- А) Локализованного отрицательного заряда
- Б) Сильным донорным группам
- В) Пространственно сближенным неподелённым парам.
- Г) Конформационно гибкому спейсеру между аминогруппами
- 9. Связывающими центрами антикраун-эфира могут являться
- А) Атомы серы
- Б) Атомы кислорода
- В) Атомы ртути
- Г) Атомы азота
- 10. Молекулярные структуры, состоящие из ковалентно несвязанных сцепленных макроциклов называются
- А) Ротаксаны
- Б) Катенаны
- В) Геликаты
- Г) Дендримеры

Открытые.

1. Охарактеризуйте важнейшие преимущества гетерокорандов перед классическими краунэфирами (минимум 2).

Ответ: повышенное сродство к ионам переходных металлов, управление селективностью, простота иммобилизации, тонкая регулировка размера полости.

2. Каковы основные области применения нуклеофильных хозяев — краун-, лариат-эфиров, подандов (минимум 2)?

Ответ: межфазный транспорт, экстракция катионов, растворение электролитов в неполярных средах, молекулярные устройства.

- 3. Какие отрасли промышленности являются основным потребителем циклодекстринов? Ответ: фармацевтическая, пищевая, парфюмерно-косметическая
- 4. Для реализации свойств «молекулярного полупроводника» в молекуле могут присутствовать (минимум 3)

Ответ: донорная и акцепторная часть, сопряжённый спейсер, короткий алкильный спейсер, электронодефицитный и электроноизбыточный фрагменты, спейсер, длина которого не превышает расстояние туннелирования электрона.

5. Назовите основные типы нуклеофильных хозяев (минимум 3) Ответ: коранды, лариаты, криптанды, сферанды, гетерокоранды, поданды, каликсарены.

Критерии и шкалы оценивания:

Для оценивания выполнения заданий используется балльная шкала: 1) закрытые задания (тестовые, средний уровень сложности):

- 1 балл указан верный ответ;
- 0 баллов указан неверный ответ, в том числе частично.
- 2) открытые задания (тестовые, средний уровень сложности):
- 2 балла указан верный ответ;
- 0 баллов указан неверный ответ, в том числе частично.